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Coulomb Green function with a definite value of L,? 
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Abstract. An integral representation is obtained for the Coulomb Green function belonging 
to a definite value of L,. 

The purpose of this paper is to write down the Coulomb Green function which 
corresponds to a definite value of the operator 

Lz = ( r  x PI*. 
According to Hostler and Pratt (1963) the Green function G(r2, rl, U ) ,  which is a 

solution of the differential equation: 
[V;+(2kv/r2)+k2]G(rz, rl, w ) = 6  3 (r2-r1) 

U = (kaJ1; al = 4 ~ r h ~ ( m z e ~ ) - ' ;  k = (2m0/h)'/~ I m k > O  (1) 
is given by: 

which satisfies the following boundary conditions at the origin and at infinity: 

with 

x = rl+rz+lr2-rll,  y = rl + r2 - Ir2 - rl) .  

Now let us write the above expression in cylindrical coordinates: 

1 +05 

2~ m=-m 
G(r2, rl, U)=-  1 Gm(w2, P I ~ I , ~ )  exp[im(42-41)1. 

Introducing: 

h = + z - + i  
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(3) 

(4) 
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we have: 

dx plp2sinA- -- dy -= - 
dA lr2-rll dA 

and therefore equation (2) can be written as: 

As x > y we can use the following representation for the product of two Whittaker 
functions (Buchholz 1969, equation (50)): 

with t = -ik; a1 = x; a2 = y, 
Then equation (6) gives 

1 1  1 d  
4.rr p1p2 sinA dA 

G(r2, f ir  w =- - - - 

Let us recall that: 

ny = 2 r l r 2 + 2 ~ 1 ~ 2 + 2 ~ 1 ~ 2 c o s  A 

n + y = 2(rl + r2) 

and therefore it follows that (see also Hostler 1964): 

1 "  
G(r2, rl, w )  = 1 do coth2'" ($o)(ik sinh U) 

xexp[ik(rl + r2) cosh u]lo(-ik&y sinh U). 

Now, as we have: 

Zo(z) = Jo(iz) 

and also, by Graf's addition theorem (ErdClyi 1953, equation (5 ) ) ,  

(9) 
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Equation (10) can be written as: 

1511 >I521 

Comparison with equation (3) gives: 

Gm(pzzz, ~ i z i , ~ )  

du exp[ik(rl + r z )  cosh U ]  coth2"(iu)(ik sinh u)Jm(&)Jm(&) (13) 
1 "  =z lo 

where: 

,fl = 2-'/'k sinh v [ ( r l r z  + zlz2 + plp2)1/2 + (r1r2 + zlzz - plp2)1/2] 

5 - - 2 -1/2k sinh u[(rl rz + z1 z2 + plp2)1/2 - ( rl r2 + zlzz - p1p2) "'1. 
This Green function can have some applications. For instance by writing down the 

integral equation for the wavefunction of an hydrogen atom in an external uniform 
magnetic field, with the help of the Green function equation (12), the bound state 
energies and the corresponding wavefunctions can be obtained by solving numerically 
the corresponding homogeneous integral equation. 

In similar kinds of problem which involve only one variable this is easily handled and 
we obtain rather accurate energies as well as wavefunctions, at least for the lowest states 
(Byron and Fuller 1970). 

In our present case, from the computational point of view the problem is more 
difficult since the corresponding wavefunctions $m depend on two variables pz and z z .  

Similar considerations hold if we take as the Green function that corresponding to a 
free electron in an uniform magnetic field (Bellandi and Zimerman 1975). 
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